Distributed Training with PyTorch

@shagunsodhani

Toronto Machine Learning Summit, 2022

About Me

- 1. Research Engineer @ Meta Al
- 2. Focusing on building AI agents that can:
 - a. interact with and learn from the physical world
 - b. consistently improve as they do so without forgetting the previous knowledge

Agenda

- 1. Torch Distributed
- 2. Data Parallel (DP)
- 3. Distributed Data Parallel (DDP)
- 4. Fully Sharded Distributed Data Parallel (FSDP)

- 1. Start multiple processes, one process per gpu
- 2. For each process, initialize process groups
- 3. Update dataloader to use DistributedSampler
- 4. For each process, destroy the process group

Start multiple processes | DDP

world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, ...), nprocs=world_size)

Start multiple processes | DDP

world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, ...), nprocs=world_size)

def main(rank: int, world_size: int, *args, **kwargs):
 ddp_setup(rank, world_size)

Start multiple processes | DDP

world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, ...), nprocs=world_size)

def main(rank: int, world_size: int, *args, **kwargs):
 ddp_setup(rank, world_size)

```
def ddp_setup(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"
    init_process_group(backend="nccl", rank=rank, world_size=world_size)
```

World Size and Rank | DDP

Initialize Process Groups | DDP

Backend

gloo

mpi

nccl

Taken from https://github.com/pytorch/examples/blob/main/distributed/ddp/README.md

Initialize Process Groups | DDP

Backend	gloo	mpi	nccl	

Initialize Process Groups | DDP

Backend	gloo		mpi		nccl	
Device	CPU	GPU	CPU	GPU	CPU	GPU
send	√	×	√	?	×	√
recv	√	×	√	?	×	√
broadcast	√	√	√	?	×	√
all_reduce	√	√	√	?	×	√
reduce	1	×	1	?	×	√

Taken from https://github.com/pytorch/examples/blob/main/distributed/ddp/README.md

Which backend to use | DDP

- Rule of thumb
 - $\circ~$ Use the NCCL backend for distributed GPU training
 - $\,\circ\,$ Use the Gloo backend for distributed CPU training.
- GPU hosts with InfiniBand interconnect
 - $\,\circ\,$ Use NCCL, since it's the only backend that currently supports InfiniBand and GPUDirect.
- GPU hosts with Ethernet interconnect
 - Use NCCL, since it currently provides the best distributed GPU training performance, especially for multiprocess singlenode or multi-node distributed training. If you encounter any problem with NCCL, use Gloo as the fallback option. (Note that Gloo currently runs slower than NCCL for GPUs.)
- CPU hosts with InfiniBand interconnect
 - If your InfiniBand has enabled IP over IB, use Gloo, otherwise, use MPI instead. We are planning on adding InfiniBand support for Gloo in the upcoming releases.
- CPU hosts with Ethernet interconnect
 - $\,\circ\,$ Use Gloo, unless you have specific reasons to use MPI.

Which backend to use | DDP

- 1. NCCL for distributed GPU training
- 2. Gloo for distributed CPU training

Dataloader | DDP

Destroy the process group | DDP

from torch.distributed import destroy_process_group destroy_process_group()

Distributed Data Parallel (DDP) vs Data Parallel (DP)

DDP	DP			
Implements data parallelism at model level				
Uses multiprocessing	Uses multithreading			
Preferred	Not Recommended			
Requires writing more code	Requires a one-line change			

Fully Sharded Data Parallel (FSDP)

- 1. DDP (and DP) are useful when we have fit the model on one GPU.
- 2. What happens is the model is too big for one GPU?
- 3. FSDP to the rescue

Fully Sharded Data Parallel (FSDP)

Fully Sharded Data Parallel (FSDP)

- >>> import torch
- >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
- >>> torch.cuda.set_device(device_id)
- >>> sharded_module = FSDP(my_module)
- >>> optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
- >>> x = sharded_module(x, y=3, z=torch.Tensor([1]))
- >>> loss = x.sum()
- >>> loss.backward()
- >>> optim.step()

Motivation | Torch Distributed

1. Build custom workflows for training models

Overview | Torch Distributed

- 1. *torch.distributed* module
- 2. Provides communication primitives
- 3. torch.distributed.send or torch.distributed.recv

torch.distributed.send(tensor, dst, group=None, tag=0)

Communication Primitives | Torch Distributed

- 1. Point-to-point communication
 - a. send, recv, isend, irecv
- 2. Collective Operations
 - a. broadcast, reduce, gather...

References

- 1. <u>https://pytorch.org/</u>
- 2. <u>https://pytorch.org/docs/stable/index.html</u>
- 3. <u>https://discuss.pytorch.org/</u>

What did we not cover

- 1. Model Parallel
- 2. <u>Distributed RPC</u>
- 3. Distributed Optimizers
- 4. Distributed Elastic

Acknowledgements

Olivier Delalleau

Thank you!

@shagunsodhani